Important Instructions for the School Principal

(Not to be printed with the question paper)

1) This question paper is strictly meant for the use in School Based Summative AssessmentII, March-2012 only. This question paper is not to be used for any other purpose except mentioned above under any circumstances.
2) The intellectual material contained in the question paper is the exclusive property of Central Board of Secondary Education and no one including the user school is allowed to publish, print or convey (by any means) to any person not authorised by the Board in this regard.
3) The School Principal is responsible for the safe custody of the question paper or any other material sent by the Central Board of Secondary Education in connection with School based SA-II, March-2012, in any form including the print-outs, compact-disc or any other electronic form.
4) Any violation of the terms and conditions mentioned above may result in the action criminal or civil under the applicable laws/byelaws against the offenders/defaulters.

Note:

Please ensure that these instructions are not printed with the question paper being administered to the examinees.

संकलित परीक्षा - II, 2012
 SCIENCE / विज्ञान

Class - X / कक्षा - X

Time allowed : 3 hours
Maximum Marks: 80
निर्धारित समय : 3 घण्टे

General Instructions:

(i) The question paper comprises of two Sections, A and B. You are to attempt both the sections.
(ii) All questions are compulsory.
(iii) There is no overall choice. However, internal choice has been provided in all the five questions of five marks category. Only one option in such questions is to be attempted.
(iv) All questions of Section-A and all questions of Section-B are to be attempted separately.
(v) Question numbers $\mathbf{1}$ to $\mathbf{4}$ in Section-A are one mark questions. These are to be answered in one word or in one sentence.
(vi) Question numbers $\mathbf{5}$ to $\mathbf{1 3}$ in Section-A are two marks questions. These are to be answered in about 30 words each.
(vii) Question numbers $\mathbf{1 4}$ to 22 in Section-A are three marks questions. These are to be answered in about 50 words each.
(viii) Question numbers 23 to 25 in Section-A are five marks questions. These are to be answered in about 70 words each.
(ix) Question numbers 26 to 41 in Section-B are multiple choice questions based on practical skills. Each question is a one mark question. You are to select one most appropriate response out of the four provided to you.

सामान्य निर्देश :

(i) इस प्रश्न पत्र को दो भागों, भाग-अ और भाग-ब में बांटा गया है। आपको दोनों भागों के प्रश्नों के उत्तर लिखने हैं।
(ii) सभी प्रश्न अनिवार्य हैं।
(iii) पूरे प्रश्न पत्र पर कोई चयन प्राप्त नहीं है, परन्तु पांच-पांच अंको के पाँच प्रश्नों में भीतरी चयन दिया गया है। इन प्रश्नों में आप केवल एक भीतरी चयन को उत्तर लिखने के लिए चुन सकते हैं।
(iv) आपको भाग-अ और भाग-ब के सभी प्रश्नों के उत्तर पृथक-पृथकलिखने होंगे।
(v) भाग-अ के प्रश्न संख्या 1 से 4 के प्रश्न एक-एक अंक के हैं। इनके उत्तर एक शब्द अथवा एक वाक्य में दें।
(vi) भाग-अ के प्रश्न संख्या 5 से 13 के प्रश्न दो-दो अंकों के हैं। इनके उत्तर लगभग 30 शब्दों में देने हैं।
(vii) भाग-अ के प्रश्न संख्या 14 से 22 के प्रश्न तीन-तीन अंकों के हैं। इनके उत्तर लगभग 50 शब्दों में देने हैं।
(viii) भाग-अ के प्रश्न संख्या 23 से 25 के प्रश्न पाँच-पाँच अंकों के हैं। इनके उत्तर लगभग 70 शब्दों में देने हैं।
(ix) भाग-ब के प्रश्न संख्या 26 से 41 के प्रश्न प्रयोगात्मक कौशल पर आधारित बहुविकल्पी प्रश्न हैं। प्रत्येक प्रश्न एक अंक का है। दिए गये चार विकल्पों में से आपको केवल एक सबसे उपयुक्त विकल्प चुनना है।

SECTION - A

1. Draw the electron dot structure of Nitrogen molecule.

ZmBQ $>\mathrm{moOZ}-\mathrm{AUw} \mathrm{H} \$ \mathrm{~s} \mathrm{Bbo}^{3} \mathrm{Q}^{\prime}>\mathrm{mo}^{\circ} \mathrm{Z}-\{\sim Y$ ÝXp g§aMZm It $\{\mathrm{ME} \&$
2. State the nature of the image formed at the retina of human eye.
'mZd ZoÌ Ho\$ ao $\{\mathrm{Q}>\mathrm{Zm}(\tilde{\mathrm{N}}\{\mathrm{i}>\mathrm{nb})$ na $\sim \mathrm{Zo}$ à $\{\mathrm{V}\{\sim \mathrm{a} \sim \mathrm{H} \$ \mathrm{~s}$ àH¥\$\{V H\$m CëboI H\$s\{OE\&
3. Define ecosystem.
$\mathrm{nm}\left[\mathrm{aV} \S \mathrm{I}\right.$ H\$s $\mathrm{n}\left[\mathrm{a}^{\wedge} \mathrm{mfm}\{\mathrm{b}\{\mathrm{IE} \&\right.$
4. In the following food chain 40J of energy was available to the Hawks.

How much energy would have been present in the plants?
Plants \rightarrow Rats \rightarrow Snakes \rightarrow Hawks
ZrMo Xr J $\llbracket r ~ I m K ~ u ̂ m ¥ § I b m ~ ‘ \mid ~ ~ m O ~ H \$ m o ~ 40 j ~ D \$ O m ® ~ C n b a ̃ Y ~ W r \& ~$ $n_{i} \mathrm{YMm}_{-} \mid\{\mathrm{H} \$ V \mathrm{Zr} \mathrm{D} \$ \mathrm{Om} \subset$ hmoZr Mm\{hE?
$n \mathrm{n} ; \mathrm{Yo} \rightarrow$ Myho $\rightarrow \mathrm{gm} \pm \mathrm{n} \rightarrow \sim \mathrm{m} \mu \mathrm{O}$
5. State moderns periodic law on which side of the periodic table do you find
(i) metals (ii) non-metals ?

AmYw\{ZH\$ AmdV® \{Z|‘ \{b\{IE \& AmdV© gmaUr Ho\$ \{H\$g Amoa (i) YmVw (ii) $\mathrm{AYmVw} n m E O m V o h_{i} \S$?
6. The atomic radii of three elements A, B and C of a periodic table are $186 \mathrm{pm}, 104 \mathrm{pm}$ and 143 pm respectively. Giving a reason, arrange these elements in the increasing order of atomic numbers in the period.
VrZ VËdm| A, , B VWm C H\$s na'mUw \{İÁqm H«\$‘e...186pm, 104pm VWm 143pm hi\& H\$maU ñnï> H\$aVo hpE BZ VËdm| H\$mo AmdV®

7. (a) What is the fate of the ovules and the ovary in a flower after fertilization ?
(b) How is the process of pollination different from fertilization?
(a) $\{Z \mathrm{ZfoMZ}$ Ho\$ níMmV $\{\mathrm{H} \$ g r$ nwîn $‘ \mid \sim$ rOmÊS $>$ VWm AÊS $>$ meq $\mathrm{H} \$ \mathrm{~m}{ }^{3}\left[\mathrm{~m}\right.$ hmoVm h_{j} ?
(b) $\left\{\mathrm{ZfoMZ} \mathrm{H} \$ \mathrm{~s}\right.$ à $\left\{\mathrm{H}<\$\right.$ Im namJU go $\left\{\mathrm{H} \$ \mathrm{~g}\right.$ àH\$ma $\left\{{ }^{\wedge} \mathrm{D} \mathrm{hmoVr} \mathrm{h} \mathfrak{i}\right.$?
8. Write two functions each of :
(a) Testis
(b) Ovaries
(a) $\mathrm{d} ¥ \mathrm{f} U$
(b) $A \hat{E} S>m e d[$
à̈̈サoH\$ Ho\$ Xmo-Xmo H\$m \ddagger © $\{\mathrm{b}\{$ IE \&
9. The radius of curvature of concave mirror is 50 cm . Where should an object be
$\left\{\mathrm{H} \$ \mathrm{gr} \mathrm{AdVb} \mathrm{Xn} \odot \mathrm{U} \mathrm{H} \$ \mathrm{~s} \mathrm{dH}<\$ \mathrm{Vm}\left\{\mathrm{I} A ́ d m \mathrm{~m} 5 \mathrm{~cm} \mathrm{~h}_{i} \&\{\mathrm{H} \$ \mathrm{gr}\right.\right.$ \{~å~ H\$mo

Xn©U Ho\$ gm‘Zo H\$hmº al| $\{\mathrm{H} \$ \mathrm{CgH} \$ \mathrm{~m}$ à $\{\mathrm{V}\{\sim \mathrm{a} \sim$ AZÝV na $\sim \mathrm{Zo} \&$ AnZo CÎma H\$s nw\{ï> H\$s\{OE\&
10. (a) What is the near point of the human eye with normal vision ?
(b) Why is a normal eye not able to see clearly the objects placed closer than the near point?
(a) gm'mÝ $\mathbb{N} \tilde{\mathrm{N}}\left\{\mathrm{i}>\mathrm{Ho} \mathrm{\$}\right.$ 'mZd ZoÌ $\mathrm{H} \$ \mathrm{~m}\left\{\mathrm{ZH} \$ \mathrm{Q}>\left\{\sim \mathrm{Y} \mathrm{Xb}{ }^{3} \mathrm{~m}[\mathrm{~m} \mathrm{hmoVm}\right.\right.$ h_{i} ?
(b) gm‘mÝđ ZoÌ \{ZH\$Q> \{~ÝXp go H\$‘ Xÿar na pñWV dñVwAm| H\$mo ñnï> ${ }^{3}[\mathrm{~m} \mid$ Zht XoI nmVm?
11. The sun appears oval (or flattened) at sunrise and sunset, but appears circular at noon. Explain, why?
 MnQ>m) àVrV hmoVm $h_{i} \mathrm{O} \sim\{\mathrm{H} \$ \mathrm{Xmonha} \mathrm{Ho} \mathrm{\$} \mathrm{~g}$ ‘đ Jmob àVrV

12. List four disadvantages of burning fossil fuels ?

Ordí_r B ${ }^{\text {a }}$ YZ H\$mo ObmZo H\$s Mma hm\{Z $\mathbb{Z} \| \mathrm{m} \mid \mathrm{H} \$ \mathrm{~s}$ gyMr ~ZmBE\&
13. List four stakeholders of forests.
dZm| Ho\$ Mma XmdoXmam| H\$s gyMr ~ZmBE\&
14. (a) (i) Identify the product (A) formed in the following reaction-

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \underset{\text { Conc. } \mathrm{H}_{2} \mathrm{SO}_{4}}{\stackrel{443 \mathrm{~K}}{\longrightarrow}} \mathrm{~A}+\mathrm{H}_{2} \mathrm{O}
$$

(b) What is the function of Concentrated Sulphuric acid in the above reaction ? Define functional group.
 H\$mo nhMm\{ZE -

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \underset{\text { सांद्र } \mathrm{H}_{2} \mathrm{SO}_{4}}{\stackrel{443 \mathrm{~K}}{\longleftrightarrow}} \mathrm{~A}+\mathrm{H}_{2} \mathrm{O}
$$

(c) àH\$mๆm®Ë‘H\$ g'yh H\$s n[a^mfm \{b\{IE\&
15. An atom has electronic Configuration $2,8,2$
(a) What its the atomic number of this element ?
(b) What is in Valency ?
(c) To which of the following element would it be chemically similar and why ? (Atomic numbers are given in parentheses) Be (4), $\mathrm{O}(8)$, justify your answer.
\{H\$gr na'mUw H\$m Bbo ${ }^{3} \mathrm{Q}^{\prime}>\operatorname{moZ}\{d Y ́ q[m g ~ 2, ~ 8,2 \mathrm{~h} ; \mathrm{Z}$
(a) Bg VËd $\mathrm{H} \$ \mathrm{~s}$ na‘mUw $\mathrm{g} \S » \llbracket \mathrm{~m}^{3}{ }^{3} / \mathrm{m} \mathrm{h}_{\mathrm{i}}$?
(b) $\mathrm{BgH} \$ \mathrm{~s} \mathrm{~g} \S \llbracket \mathrm{moOH} \$ \mathrm{Vm}^{3}{ }^{3} \| \mathrm{m} \mathrm{h}_{i}$?
(c) Th amgm $[\{Z H \$ \tilde{N}[i \gg$ go $\mathrm{ZrMo}\{\mathrm{XE}$ JE $\{\mathrm{H} \$ \mathrm{~g}$ VËd Ho\$ g'mZ hi
 CÎma H\$s nw\{ï H\$s\{OE\&
16. (a) Mention two secondary sexual characters in human male.
(b) Why testes in male body are extra-abdominal ?
(c) Write the dual purpose served by urethra in males.
(a) _mZd Za Ho\$ Xmo \{ UVrq\|H\$ $\mathrm{Im}_{i} Z \quad$ bjUm $\mid \mathrm{H} \$ \mathrm{~m}$ CëboI H\$s\{OE\&
(b) 'mZd Za ‘| d¥fU CXa Jwhm Ho\$ ~mha ${ }^{3}[\mathrm{~m} \mid \mathrm{hmoVo} \mathrm{h} \not \subset ?$
(c) 'mZd Za '| 'yÌ_mJ© Ûmam \{H\$E OmZo dmbo Xmo H\$m\|(C) \{b\{IEŸ\&
17. (a) Define genetics.
(b) Who is regarded as the 'Father of Genetics' ? Name the plant on which he performed his experiments.
(c) Why did he select that specific plant for his experimental studies ?
(a) AmZwd§[eH\$s ${ }^{3}\left[\mathrm{~m} \mathrm{~h} \mathrm{~h}_{i}\right.$?
(b) 'AmZwd§\{eH\$s H\$m OZH\$' \{H\$Ýh| 'mZm OmVm hi? Cg nmXn $\mathrm{H} \$ \mathrm{~m}$ Zm‘ $\left\{\mathrm{b}\left\{\mathrm{IE}\left\{\mathrm{Og}\right.\right.\right.$ na CÝhmo§Zo AnZo à $\mathrm{Im}_{\mathrm{m}} \mathrm{J}$ \{H\$E Wo\&
(c) CÝhmo§Zo AnZo àm $[m o\{J H \$$ AÜ $\llbracket q[Z m \mid \operatorname{Ho\$ }\{b E$ Bgr \{d[eï> nmXn H\$mo ${ }^{3}[\mathrm{~m} \mid \mathrm{MwZm}$?
18. (a) Name the unit of inheritance. What is its function?
(b) How are inherited traits different from acquired traits ? Give example.
(a) d§emZwJV H\$s BH\$mB© $\mathrm{H} \$ \mathrm{~m} \mathrm{Zm}^{‘}$ \{b\{IE\& BgH\$m ${ }^{39} \mid \mathrm{m} \mathrm{H} \$ \mathrm{~m} \|$ © h_{i} ?
(b) $\operatorname{Cnm}\left\{\mathrm{O} \odot V\right.$ bjU d§emZwJV bjUm| go $\left\{\mathrm{H} \$ \mathrm{~g}\right.$ àH\$ma $\left\{{ }^{\wedge} \mathrm{P}\right.$ hmoVo hi§? CXmhaU Xr\{OE\&
19. (a) What are fossils ? How do we know how old the fossils are ?
(b) State two differences between Homologues organs and Analogous organs.
(a) Ordmí‘ ${ }^{36} \mid \mathrm{m} \mathrm{h}_{\mathrm{i}} \S$? $\mathrm{h}^{‘}$ Th $\mathrm{H}_{i} \$$ go $\mathrm{kmV} \mathrm{H} \$ \mathrm{aVo} \mathrm{h} \notin\{\mathrm{H} \$$ Ordmí‘ $\left\{\mathrm{H} \$ V Z o\right.$ nwamZo $h_{i} \S ?$
(b) g‘OmV A§J VWm g‘ê\$n A§J '| Xmo AÝVam| H\$m CëboI H\$s\{OE\&
20. (a) Name and define the S.I. unit of power of a lens.
(b) How is the power of a lens related to its focal length ? Find the power of a concave lens of focal length 25 cm .
(a) $\mathrm{b} \S \mathrm{og} \mathrm{H} \$ \mathrm{~s}$ j_Vm Ho\$ S. I. ‘mÌH\$ H\$m Zm' Ed§ CgH\$s n[a^mfm \{b\{IE\&
 Cg CÎmb b|g H\$s j‘Vm kmV H\$s \{OE $\quad\{\mathrm{OgH} \$ \mathrm{~s} \quad$
\$moH\$g Xÿar $25 \mathrm{~cm} \mathrm{~h} / \&$
21. (a) State Snell's law of refraction.
(b) What is the speed of light in a transparent medium which has a refractive index of 1.7 (the speed of light in vacuum is $3 \times 10 \mathrm{~m} / \mathrm{s}$)
(a) ñZob H\$m AndV®Z H\$m \{Zq‘ \{b\{IE\&
(b) Cg nmaXeu 'mÜq' '| $\mathrm{n}<\mathrm{H} \$$ me $\mathrm{H} \$ \mathrm{~s}$ Mmb kmV H\$s\{OE \{OgH\$m AndV©Zm§H\$ $1.7 \mathrm{~h}_{\mathrm{i}}$?
($\left\{\mathrm{Zdm@V} `\right.$ àH\$me $\mathrm{H} \$ \mathrm{~s} \mathrm{Mmb}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
22. A student has difficulty in reading the black board while sitting in the last row

What could be the defect the student is suffering from ? How can it be corrected ? Draw the ray diagrams for (a) defective eye (b) its correction.
 \{bIo eãXm| H\$mo ñnï> XoI nmZo '| $\mathrm{H} \$\left\{\mathrm{R}>\mathrm{ZmB}\right.$ © hmoVr $\mathrm{h}_{\mathrm{C}} \& \mathrm{dh}$ $\left\{\mathrm{H} \$ \mathrm{~g} \tilde{\mathrm{~N}}\left\{\mathrm{i} \gg\right.\right.$ Xmof go $\mathrm{nr}\left\{\mathrm{S}>\mathrm{V}\right.$ hmo $\mathrm{gH} \$ \mathrm{Vm} \mathrm{h}_{\mathfrak{i}}$? BgH\$m g§emoYZ $\{\mathrm{H} \$ \mathrm{~g}$ àH\$ma \{H\$Im Om gH\$Vm h_{i} ?
(a) Xmof $\ddagger w$ ŠV ZoÌ VWm
(b) g§emo\{YV ZoÌ Ho\$ \{bE \{H\$aU AmaoI H\$s\{OE\&
23. Answer the following question :
(a) Write the name of the functional group in $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
(b) An organic compound burns with a sooty flame. Is it saturated or unsaturated hydrocarbon?
(c) Giving balanced equation state how you will convert methane to carbon dioxide.
(d) Why does micelle formation take place when soap is added to water? Will a micelle be formed in all types of solvents? Justify your answer.
ZrMo \{XE àíZm| Ho\$ CÎma \{b\{IE-
(a) $\mathrm{CH}_{3} \mathrm{COCH}_{3} \quad \mid \mathrm{CnpñWV}$ àH\$mIIm®Ë‘H\$ g‘yh H\$m Zm‘ \{b\{IE\&
(b) $\mathrm{H} \$ \mathrm{moB} \subset \mathrm{C} \mathrm{H} \$ \mathrm{~m} \sim \mathrm{CZ} \mathrm{Im}_{\mathrm{i}}\{\mathrm{JH} \$ \mathrm{H} \$ \mathrm{~m}\{\mathrm{bI}$ dmbr Ádmbm Ho\$ gmW ObVm $h_{i} \&$ Th $\mathrm{hmBS} S^{\prime}>\operatorname{moH} \$ \mathrm{~m} \sim \mathrm{CZ}$ g§V¥á h_{i} AWdm Ag§V¥á? (c) $\mathrm{g} \S \mathrm{Vw}\left\{\mathrm{bV} \mathrm{g}^{‘} \mathrm{rH} \$ \mathrm{aU}\right.$ Ûmam $\mathrm{C}, \not, \mathrm{oI} \mathrm{H} \$ \mathrm{~s}\left\{\mathrm{OE}\left\{\mathrm{H} \${ }^{\prime} \mathrm{oWoZ} \mathrm{H} \$ \mathrm{mo}\right.\right.$ $\mathrm{H} \$ \mathrm{~m} \sim \mathrm{C} Z \quad \mathrm{~S}>\mathrm{mBAm}{ }^{03} \mathrm{gmBS}>{ }^{\prime} \mid\{\mathrm{H} \$ \mathrm{~g}$ àH\$ma n[ad\{V®V \{H\$Im OmVm hi\&
(d) Ob ‘ $\mathrm{gm} \sim \mathrm{wZ} \mathrm{H} \$ \mathrm{mo}$ \{‘bmZo na \{'gob H\$m \{Z'm©U \{H\$g àH\$ma
 $\mathrm{H} \$ \mathrm{~m}\left\{\mathrm{Z}^{\prime} \mathrm{m} \mathrm{CU}\right.$ hmoJm? CÎma H\$s nw \{i>> H\$s \{OE\&

OR/AWdm

(a) Draw the structure of Bromopentane.
(b) Name the Catalyst Commonly used in the process of conversion of vegetable oil into fats(vegetable ghee).
(c) With the help of an activity describe esterification process using ethanol and ethanoic acid.
(a) ~«mo_monoÝQ>oZ H\$s g§aMZm It \{ME\&
(b) dZñn\{V Vobm| H\$mo dgm (dZñn\{V Kr) 'o§ ê\$nmÝV[aV H\$aZo $\mathrm{H} \$ \mathrm{~s}$ à $\{\mathrm{H}<\$ \Phi \mathrm{~m}$ ' gm 'mÝ $\|V \ldots \mathrm{Cn}\| \mathrm{moJ}\{\mathrm{H} \$ \mathrm{E}$ OmZo dmbo
CËàoaH\$ H\$m Zm‘ \{b\{IE \&
(c) $\{\mathrm{H} \$ \mathrm{gr} \quad[\mathrm{H}<\$] \mathrm{mH} \$ \mathrm{bmn} \mathrm{H} \$ \mathrm{~s}$ ghm $]\left[\mathrm{Vm}\right.$ go $E W o Z \mathrm{~m}^{\circ} \mathrm{b}$ VWm EWoZmºbH\$ Aåb Ho\$ Cn`moJ Ûmam EñQ>arH\$aU à\{H«\$’m H\$m dU©Z H\$s\{OE\&
24. (a) List two advantages of sexual reproduction over asexual reproduction.
(b) Name the type of asexual reproduction seen in :
(i) Plasmodium (ii) Planaria
(c) Draw a diagram of Rhizopus showing the location of :
(i) Sporangium (ii) Rhizoidal hyphae.
(d) How will an organism be benefited if it reproduces through spores?
(a)Ab¢ $\{\mathrm{JH} \$ \mathrm{OZZ}$ H\$s VwbZm '| bф $\{\mathrm{JH} \$ \mathrm{OZZ}$ Ho\$ Xmo bm^ H\$s gyMr ~ZmBE\&
(b) ZrMo \{XE JE Ordm| ‘| \{XImB® XoZo dmbo Ab¢\{JH\$ OZZ Ho\$ àH\$ma H\$m Zm‘ \{b \{IE-
(i) $ß b_{j} \mathrm{~A}^{\prime} \cdot \operatorname{mo}\left\{\mathrm{S}>\mathrm{q} \mid{ }^{\text {' }}\right.$
(ii) $3 b_{j} \mathrm{Zo}[\mathrm{aUm}$
(c) $\mathrm{amB} \mu \mathrm{Omong} \mathrm{H} \$ \mathrm{~m}$ AmaoI Ir §MH\$a \{ZåZ\{b\{IV H\$s pñW\{V Xem@BE -
(i) $\mathrm{ewO} \sim \mathrm{rOmUwYmZr}$
(ii) amB μ Omong $\mathrm{H} \$ \mathrm{~m} \mathrm{H} \$ \mathrm{dH} \$ \mathrm{Omb}$
(d) \sim rOmUw Ûmam OZZ go Ord $\{\mathrm{H} \$ \mathrm{~g}$ à $\mathrm{O} \$ \mathrm{ma}$ bm^mpÝdV hmoVm h_{i} ?

OR/AWdm

(a) Draw a diagram to show human male reproductive system and label the following organs- seminal vesicle, prostate gland, vas deferens, penis.
(b) List two contraceptive methods and state two benefits of adopting these methods.
(a) 'mZd Za OZZ V§Ì H\$m AmaoI ItMH\$a ZrMo \{XE JE ^mJ Zm'm§\{H\$V H\$s \{OEewH«\$me`, àmoñQ>oQ> $\mathrm{J}<$ § $\{\mathrm{W}$, ewH«<dm\{hZr \{eíZ\$
(b) Xmo J^@\{ZamoYH\$\$ \{d\{Y $1 m \mid \mathrm{H} \$ \mathrm{~s}$ gyMr $\sim \mathrm{ZmBE}$ VWm BZ $\{\mathrm{d}\{\mathrm{Y} \subseteq \mathrm{m} \mid \mathrm{H} \$ \mathrm{mo}$ AnZmZo Ho\$ Xmo bm^ $\{\mathrm{b}\{\mathrm{IE} \&$
25. (a) Two lenses have power of (i) 2D (ii) - 4D. State the nature and focal length of each lens.
(b) A concave lens has focal length of 20 cm . At what distance from the lens a 5 cm tall object be placed so that it forms an image at 15 cm from the lens ? Also calculate the size of the image formed.
(a) Xmo b|gm| H\$s j‘VmE§ (i) 2D (ii) - 4D hф¢ \& BZ‘ àË \uparrow oH\$ b|g H\$s àH¥\$\{V VWm $\$ \$ \mathrm{moH} \$ \mathrm{~g}$ Xÿar H\$m C,,«oI H\$s\{OE\&
(b) $\{\mathrm{H} \$ \mathrm{gr} \mathrm{AdVb} \mathrm{b} \mid \mathrm{g} \mathrm{H} \$ \mathrm{~s}$ ' $\$ \mathrm{moH} \$ \mathrm{~g}$ Xÿar $20 \mathrm{~cm} \mathrm{~h} ; \&\{\mathrm{H} \$ \mathrm{gr} 5 \mathrm{~cm}$ bå~o \{~å~ H\$mo Bg bo§g go \{H\$VZr Xÿar na aI| $\{\mathrm{H} \$ \mathrm{CgH} \$ \mathrm{~m}$ à $\{\mathrm{V}\{\sim \mathrm{a} \sim \mathrm{b} \mid \mathrm{g}$ go 15 cm Xÿar na $\sim \mathrm{Zo} \&$

OR/AWdm

(a) Name the type of mirror used in the following :
(i) Headlights of a car.
(ii) Rear view mirror of a vehicle.

Support your answer with reason.
(b) When an object is placed at a distance of 60 cm from a diverging spherical mirror, the magnification produced is 0.5 . Where should the object be placed to get a magnification of $\frac{1}{3}$?
(a) $\{\mathrm{Zå} Z\{\mathrm{~b}\{\mathrm{IV} \times \mathrm{Cn} \mid$ moJ hmoZo dmbo Xn©Um| Ho\$ Zm‘Ed§ àH\$ma \{b\{IE:
(i) $\mathrm{H} \$ \mathrm{maH} \mathrm{H} \$ \mathrm{~s} \mathrm{~h}_{\mathrm{i}} \mathrm{S}>\mathrm{bmBQ}>$ (ii) $\mathrm{dmhZm}|\quad| \mathrm{nrN}>0 \mathrm{H} \$ \mathrm{~m}$ Nít| XoIZo Ho\$ \{bE bJm Xn@U AnZo CÎma H\$s H\$maU g\{hV nw\{i> H\$s\{OEŸ\&
(b) $\mathrm{O} \sim\{\mathrm{H} \$ \mathrm{gr}\{\sim \mathrm{a} \sim \mathrm{H} \$ \mathrm{mo}\{\mathrm{H} \$ \mathrm{gr}$ Angmar Xn©U Ho\$ gm‘Zo 60cm Xÿar na aIVo hф Vmo ~ZZo dmbo à $\{\mathrm{V}\{\sim \mathrm{a} \sim \mathrm{H} \$ \mathrm{~m}$

AmdY©Z 0.5 hmoVm hi\& Bg \{~å~ H\$mo Bgr Xn©U Ho\$ gm'Zo $\mathrm{H} \$ \mathrm{hm} \pm$ na aIm OmE $\left\{\mathrm{H} \$ \frac{1}{3}\right.$ AmdY ©Z àmá hmo?

SECTION-B/^mJ - ~

26. An iron nail was kept immersed in aluminum sulphate solution. After about an 1 hour, it was observed that
(a) The colourless solution changes to light green.
(b) The solution becomes warm.
(c) Grey metal is deposited on the iron nail.
(d) The solution remains colorless and no deposition is observed on iron nail.
\{H\$gr bmoho H\$s H\$sb H\$mo Eobw\{‘Zq‘ gë’o\$Q> \{dbqZ ‘| $\mathrm{Sw}>\sim \mathrm{moH}$ a a $\operatorname{Im} \mathrm{J}\left[\left[\mathrm{m} \& \mathrm{bJ}^{\wedge} \mathrm{J} \mathrm{EH} \$ \mathrm{KÝQ}>_{o} \mathrm{Ho} \mathrm{\$}\right.\right.$ níMmV àojU H\$aZo na Ih nm
(a) a JhrZ $\{\mathrm{db} \|[\mathrm{Z}$ hëH\$m ham hmo J J[m \&
(b) \{dbサIZ hëH\$m J_© hmo J $\ddagger[m$ Ÿ \&
(c) bmoho H\$s H\$sb na Kyga naV O‘ J JTr\&
(d) $\{d b \Psi[Z$ a§JhrZ hr ahm VWm bmoho H\$s H\$sb na H\$moB® naV Zht O_t\&
27. Zinc granules were added to Zinc sulphate copper sulphate, aluminium sulphate and iron sulphate solution as shown below. A student would observes the deposition of metal on zinc in beakers:
।
II

(a) I and III
(b) I and II
(c) II and IV
(iv) III and IV
\{MÌ '| Xem®E AZwgma qOH\$ gë’o\$Q>, H\$mna gë’o\$Q>, Eobw§ \{‘\{Zq|‘ gë’o\$Q> VWm Am\|aZ gë’o\$Q> \{db\|Zm|‘| qOH\$ H\$s H\$ \{UH\$mE§ S>mbr J It \& H\$moB© $>$ >mI qOH\$ H\$s H\$ na YmVw H\$s naV H\$m \{ZjonU \{H\$Z~rH\$am| ‘| XoIoJm?

(a) I and III
(b) I and II
(c) II and IV
(iv) III and IV
28. About 2 mL of acetic acid was taken in each of the three test tubes P, Q and R and $5 \mathrm{~mL}, 10 \mathrm{~mL}$ and 15 mL of distilled water were added to them respectively.

Instantaneously a clear solution is observed in the test tubes :
(a) (P) and (Q) only
(b) (Q) and (R) only
(c) (R) and (P) only
(d) (P), (Q) and (R)
 boH\$a CZ_|| H«\$_e... 5mL, 10mL, 15mL AmgwV Ob \{‘bm\|m JTm\& Cgr jU ñnï> $\{\mathrm{db}|\mid \mathrm{Z}\{\mathrm{OZ}$ naIZ $\{\mathrm{b} \| \mathrm{m}|‘| \sim \mathrm{Zm}$ do $\mathrm{h} \notin$:
(a) Ho\$db (P) VWm (Q)
(b) Ho\$db (Q) VWm (R)
(c) $\mathrm{Ho} \$ \mathrm{db}$ R VWm (P)
(d) (P), (Q) VWm (R) VrZm
29. Four students performed experiments of acetic acid with sodium carbonate (I), the sodium hydroxide (II), sodium bicarbonate (III) and sodium chloride (IV) separately. Each one brought burning candle near the mouth of the test tube. The candle would not be extinguished near the mouth of the test tubes \qquad

III

IV

(a) I and II
(b) I and III
(c) II and III
(d) II and IV

Mma $\mathrm{N}>\mathrm{mİm} \mid \mathrm{Zo}$:
(I) $\mathrm{gmo}\left\{\mathrm{S}>\mathrm{q}^{\star} \mathrm{H} \$ \mathrm{~m} \sim \mathrm{~m}\right\} \mathrm{ZoQ}>$,
(II) $\mathrm{gmo}\left\{\mathrm{S}>\mathrm{q}^{\bullet}{ }^{6} \mathrm{hmBS}{ }^{\prime}>\mathrm{m}^{\circ 3} \mathrm{gmBS}>\right.$,
(III) gmo $\left\{\mathrm{S}>\right.$ q $\left.^{\bullet} \sim \mathrm{mBH} \$ \mathrm{~m} \sim \mathrm{~m}\right\} \mathrm{ZoQ}>$, VWm
(IV) gmo $\left\{\mathrm{S}>\right.$ q| ${ }^{\text {3b }}$ bmoamBS $>$ go n¥WH\$ -n¥WH\$ Eogr\{Q>H\$ Aåb H\$s A\{^[H《\$IIm H\$am\|r\& Mmam| naIZbr Ho\$ 'wI na ObVr 'mo'~Îmr bmE>\& \{OZ naIZ\{b`m| Ho\$ 'wI na 'mo' \sim Îmr H\$s Ádmbm ~wP, OmEJr do hф >\&

(a) I Ed§ II

(b) I Ed§ III

(c) II Ed§ III

(d) II Ed§ IV
30. When ethanoic acid is added to a solution of substance X, colourless and odourless
gas Y is liberated. The gas Y turns lime water milky. The substance X is :
(a) Sodium hydrogen Carbonate
(b) Sodium hydroxide
(c) Sodium acetate
(d) Sodium chloride.

O~ \{H\$gr nXmW© x Ho\$ \{db|Z ‘| EWoZmºBH\$ Aåb \{‘bm\|m J|m Vmo H\$moB® a§JhrZ d J§YhrZ Jig Y \{ZH\$br \& Jig Y Zo MyZo Ho\$ nmZr H\$mo Xÿ\{YサIm H\$a \{XIm\& nXmW© $\mathrm{Xh} \mathrm{h}_{\mathrm{i}}$ -
(a) $\mathrm{gmo}\left\{\mathrm{S}>\mathrm{q} \mid\right.$ ' $\left.\mathrm{hmBS}{ }^{\prime}>\mathrm{moOZH} \mathrm{Hm} \sim \mathrm{m}\right\} \mathrm{ZoQ}>$
(b) gmo $\left\{\mathrm{S}>\right.$ - ${ }^{6} \mathrm{hmBS}{ }^{\prime}>\mathrm{m}^{03} \mathrm{gmBS}>$
(c) $\operatorname{gmo}\{\mathrm{S}>\mathrm{q} \mid$ E $\mathrm{EogrQ}>\mathrm{OQ}>$
(d) gmo $\left\{\mathrm{S}>\right.$-q. ${ }^{\text {b }}$ bmoamBS $>$
31. The focal length of the concave mirror in the experimental set up, shown below equals :

(a) 10.3 cm
(b)
11.0 cm
(c)
11.7 cm
(d) $\quad 12.2 \mathrm{~cm}$
ZrMo Xem®`r J`r àm\|mo\{JH\$ iqdñWm '| AdVb Xn©U H\$s ’\$moH\$g Xÿar h_{i} -

(a) 10.3 cm
(b) 11.0 cm
(c) $\quad 11.7 \mathrm{~cm}$
(d) 12.2 cm
32. The teacher asks a student to fix the given screen at an appropriate place in the given experimental set up, so that a clear image can be obtained on the screen. If the focal length of convex lens in 8 cm , the mark on the scale at which he should fix up the screen is \qquad

(a) 12.8 cm
(b)
(c) 8 cm
(d) 13.8 cm

एक अध्यापक ने अपने छात्रों से नीचे दिखाए गए प्रायोगिक सैट-अप में स्क्रीन को उस स्थान पर रखने के लिए कहा जहाँ वस्तु का स्पष्ट प्रतिबिम्ब प्राप्त हो सके। यदि लैंस की फोकस दूरी 8 cm हो तो उसे स्क्रीन को स्केल के जिस पाठ्यांक पर रखना चाहिए वह है -

(a) 12.8 cm
(b) 13.0 cm
(c) 8 cm
(d) 13.8 cm
33. Out of the following objects which one would you prefer to determine the focal length of a given convex lens by focusing to its image or a screen ?
(a) A burning candle placed on the far end of a lab table
(b) Grills of the laboratory window
(c) A tall tree visible from the laboratory window
(d) Sun rays entering the laboratory through its window.

ZrMo \{XE JE $\{\sim \mathfrak{\sim} \sim \mathrm{m}|‘|$ go Amn $\{\mathrm{H} \$ \mathrm{go}\{\sim \mathrm{a} \sim \mathrm{Ho} \mathrm{\$}$ ê\$n ngÝX H\$aHo\$ Vm\{H\$ Amn CgHo\$ à $\{\mathrm{V}\{\sim \mathrm{a} \sim \mathrm{H}$ \$mo \{XE JE CÎmb b|g Ûmam nX $\}$ na '\$moH\$ \{ gV H\$a b|g H\$s '\$moH\$g Xÿar kmV H\$a|?
 \&
(b) à $[$ moJembm H\$s $\{\mathrm{I}<\mathrm{S}>\mathrm{H} \$ \mathrm{~s} \mathrm{H} \$ \mathrm{~s}\{\mathrm{~J}<\mathrm{b} \&$
(c) à $\ddagger[m o J e m b m \mathrm{H} \$ \mathrm{~s}\{\mathrm{I}\langle\mathrm{S}>\mathrm{H} \$$ s go $\{\mathrm{XImB} \subset \mathrm{XoZmo} \mathrm{dmbm} \mathrm{D} \pm \$ \mathrm{Mm}$ d¥j\&
(d) à \ddagger moJembm $\mathrm{H} \$ \mathrm{~s}\{\mathrm{I}\langle\mathrm{S}>\mathrm{H} \$$ s go àdoe $\mathrm{H} \$ \mathrm{aZo}$ dmbr gy\| $\mathbb{C} \mathrm{H} \$ \mathrm{~s}[\mathrm{H} \$ \mathrm{aU} \mid$ \&
34. While performing the experiment on tracing the path of a ray of light passing through a glass slab as shown in the given diagram, four students interpreted the results as given below. Which one of the four interpretations is correct ?

(a) $\angle \mathrm{r}>\angle \mathrm{e}$
(b) $\angle \mathrm{r}=\angle \mathrm{e}$
(c) $\quad \angle \mathrm{i}=\angle \mathrm{r}$
(d) $\quad \angle \mathrm{i}>\angle \mathrm{r}$

ZrMo \{MÌ ‘| Xem©E AZwgma $\{\mathrm{H} \$ \mathrm{gr} \mathrm{H} \$ \mathrm{~m} \S \mathrm{M}$ Ho\$ ñb; ~ go JwOaZo dmbr àH\$me \{H\$aU H\$m nW Amao\{IV H\$aZo H\$m à $4 m o J H \$ a V o$

(a) \angle r $>\angle$ e
(b) $\angle \mathrm{r}=\angle \mathrm{e}$
(c) $\quad \angle \mathrm{i}=\angle \mathrm{r}$
(d) \angle i $>\angle$ r
35. On the basis of their experiment to trace the path of a ray of light passing though 1 glass slab, four students arrived at the following conclusions. Select the correct conclusion.
(a) Angle of incidence is greater than the angle of emergence
(b) Angle of emergence is less than the angle of refraction
(c) Emergent ray is parallel to the incident ray.
(d) Emergent ray is parallel to the refracted ray.

AnZo - AnZo à $\ddagger m o J$ Ho\$ AmYma nwa H\$m§M Ho\$ ñb ${ }^{\sim}$ ~ go JwOaZo dmbr àH\$me \{H\$aU H\$m nW Amao\{IV H\$a Mma N>mIm| Zo \{ZåZ\{b\{IV \{ZîH\$f® \{ZH\$mbo \& BZ‘o H\$m;Z gm \{ZîH\$f® ghr hi?
(a) AmnVZ H\$moU \{ZJ©V H\$m H^{U} go Am\{YH\$ $\mathrm{h}_{i} \&$
(b)
\{ZJ©V
$\mathrm{H} \$ \mathrm{moU}$ AndV®Z $\mathrm{H} \$ \mathrm{moU}$ go $\mathrm{N}>\mathrm{moQ}>\mathrm{m} \mathrm{h}_{\mathrm{i}} \&$
(c) $\{\mathrm{ZJ} \odot V[H \$ a U ~ A m n\{V V\{H \$ a U H o \$ g ‘ m Y ́ V a h i \& \quad$ (d) $\quad\{Z J \odot V$
[H\$aU And\{V©V® \{H\$aU Ho\$ g'mÝVa hi\&
36. Which stage out of those marked I, II, III and IV is showing binary fission in $\mathbf{1}$ Amoeba?

N
(a) I
(b) II
(c) III
(d) IV

ZrMo \{XE JE Mma MaUm| I, II, iil VWm IV, ‘o§ go \{H\$g MaU ‘| A_r~m ' $\mid\{\hat{U}>I E \hat{S}$ >Z Xem®IIm J IIm hi\&

(a) I
(b) II
(c) III
(d) IV
37. A student is given a permanent slide showing binary fission in Amoeba. The following are the steps in focusing the object under the microscope, which are not in proper sequence-
(i) Place the slide on the stage; look through the eyepiece and adjust the mirror and diaphragm to get even illumination.
(ii) Look through the eyepiece and raise the objective using coarse adjustment until the object is focused.
(iii) Make the focus sharp with the help of fine adjustment.
(iv) Look through the eyepiece and move the slide until the object is visible.

The proper sequence of steps is:
(a) (i), (iii), (iv), (ii)
(b) (ii), (iii), (iv), (i)
(c) (iv), (iii), (ii), (i)
(d) (i) (iv), (ii), (iii)
$\{\mathrm{H} \$ \mathrm{gr} \mathrm{N}>\mathrm{mI} \mathrm{H} \$ \mathrm{mo}$ A_r~m ‘o§ \{ÛlÊS>Z Xem©Zo dmbr ñWm`r ñbmBS> Xr J $\Pi r h_{i} \& ~ Z r M o ~ B g ~ n ̃ b m B S>~ H \$ m o ~ g y u ́ ‘ X e u ~ ‘ \mid ~ ’ \$ m o H \$\{g V ~$ H\$aZo Ho\$ Hw\$N> MaU \{XE JE hi Omo C\{MV H«\$' ‘o§ Zht hi§\&
(i) ñbmBS> H\$mo '§M na a\{IE, Zo\{ÌH\$m go Xo\{IE VWm Xn©U VWm S>m\|ml《\$m_H\$mog'm\|mo\{OV H\$aHo\$EH\$g'mZ àH\$me àmá $\mathrm{H} \$ \mathrm{~s}\{\mathrm{OE} \&$
 A\{^Ñít|H\$ H\$mo BVZm CR>mBE \{H\$ q~å~ \{XImB© XoZo bJo\& (iii) gyú‘ g'm『moOZ Ûmam '\$moH\$g H\$mo VrúU ~ZmBE \& (iv)Zo \{İH\$m ‘o§ Xo\{IE VWm ñbmBS>> H\$mo BVZm \{IgH\$mBE \{H\$ \{~å~ \{XImB® XoZo bJo \&
BZ MaUm| $\mathrm{H} \$ \mathrm{~m}$ C $\left\{\mathrm{MV} \mathrm{H} \mathrm{H}^{\text {‘ }} \mathrm{h}_{\mathrm{i}} \&\right.$
(a) (i), (iii), (iv), (ii)
(b) (ii), (iii), (iv), (i)
(c) (iv), (iii), (ii), (i)
(d) (i) (iv), (ii), (iii)
38. Following figure represents the reproduction in :

(a) Amoeba
(b) Yeast
(c) Plasmodium
(e) Hydra

(a) A_r~m
(b) \quad IrñQ>
(c) $\quad ß b_{i} \mu$ Á $^{\prime} \operatorname{mo}\left\{\mathrm{S}>\right.$ q. $^{\text {© }}$
(e) $\quad \mathrm{hmBS}^{\prime}>\mathrm{m}$
39. The shape of yeast cell in :
(a) spherical only
(b) oval only
(c) both spherical and oval
(d) irregular

IIrñ> - H\$mo\{eH\$m H\$s AmH¥\$\{V hmoVr hi-
(a) Ho\$db Jmob
(b) Ho\$db AES $>\mathrm{mH} \$ \mathrm{ma}$
(c) Jmob VWm AÊS $>\mathrm{mH} \$ \mathrm{ma} \mathrm{XmoZm} \mid$
(d) $\mathrm{A}\left\{\mathrm{Z} \|\left\{{ }^{〔} \mathrm{~V}\right.\right.$
40. At the end of the experiment, 'to determine the percentage of water absorbed by raisins', the raisins are gently wiped just before weighing. This is to ensure that :
(a) hands do not get wet.
(b) the raisins lose water before weighing.
(c) only water absorbed by raisins is weighed.
(d) the weighing scale does not get wet.
à \llbracket ImoJ " $\{\mathrm{H} \$ \mathrm{e}$ \{‘em| U mam Ademo $\{\mathrm{fV}$ Ob H\$s à $\{\mathrm{VeVVm}\{\mathrm{ZYm@[aV}$
 R>rH\$ nhbo\$ Yrao go nm|N>Vo hфŸ\& Eogm Th gw\{ZpíMV Ho\$ \{bE $\left\{\mathrm{H} \$ \mathrm{Im}\right.$ OmVm $\mathrm{h}_{\mathrm{i}}\{\mathrm{H} \$$:
(a) hmW Jrbo Zht hm|
(b) VmobZo go nyd© \{H\$e \{‘e Ob Imo X|
(c) Ho\$db \{H\$e \{‘em| Ûmam Ademo\{fV Ob hr Vwbo
(d) Vwbm H\$m nb $<\mathrm{S}>\mathrm{m}$ Jrbm Z hmo \&
41. While performing an experiment to determine the percentage of water absorbed by raisins, the following data was obtained :
Mass of water taken in the beaker= $15 . \mathrm{g}$
Mass of raisins before soaking them in water $=200 \mathrm{mg}$
Mass of raisins after soaking in water for 2 hours $=250 \mathrm{mg}$
Mass of water left in the beaker $=12 \mathrm{~g}$
The percentage of water absorbed by raisins would be :
(a) 20%
(b) 25%
(c) 40%
(d) 50%
\{H\$e\{‘em| Ûmam Ademo\{fV Ob H\$s à \{VeVVm kmV H\$aVo g‘a
\{ZåZ\{b\{IV Am§H\$S>o àmá hbE :
$\sim \mathrm{rH} \mathrm{\$ a}$ '| \{bE Ob H\$m Điq|'mZ = $15 . \mathrm{g}$
$\{\mathrm{H} \$ \mathrm{e}\{\times \mathrm{em} \mid \mathrm{H} \$ \mathrm{~m}$ \{^JmoZo go nyd© Điq|'mZ $=200 \mathrm{mg}$
Xmo KÝQ>o Ob ‘| \{^JmZo na $\left\{\mathrm{H} \$ \mathrm{e}\left\{{ }^{‘} \mathrm{em} \mid \mathrm{H} \$ \mathrm{~m}\right.\right.$ Điq|'mZ $=250 \mathrm{mg}$
$\sim \mathrm{rH} \$ \mathrm{a} \cdot \mid \sim \mathrm{Mo} \mathrm{Ob} \mathrm{H} \mathrm{\$ m} \mathrm{Điq\mid 'mZ}=12 \mathrm{~g}$
\{H\$e \{‘em| Ûm<am Ademo \{fV Ob H\$s à $\left\{\mathrm{VeVVm} \mathrm{h}_{\mathrm{i}}\right.$ -
(a) 20%
(b) 25%
(c) 40%
(d) 50%

